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Abstract. We have carried out Monte Carlo studies of the probability distribution functions 
(PDFS) for models of WO- and three-dimensional membranes and interfaces confined between 
two parallel repulsive walls separated by a distance D .  For twodimensional interfaces it is 
known that the position PDF p(z), for conformally mapped binding potentials, scales and is 
characterized by a universal scaling function p(z )  - ( s i n ~ z / D ) ~ - '  (where rp is the short 
distance expansion critical exponent) for strong, weak and intermediate Bunation regimes. Our 
simulation studies show that for a variety of membrane models the PDF has the expected scaling 
p ( r )  = U ( z / D ) / D ,  and we 6nd that the same parametrization of the membrane POPS gives an 
excellent iit to the numerid data. 

1. Introduction 

The statistical mechanics of interfaces separating coexisting phases and the surfaces of 
complex fluid systems are interesting because of the large-scale fluctuations that may occur 
in the position of the surface at any point in space. In this paper we discuss the properties 
of model membranes and interfaces, focusing on the finite-size effects that occur when 
such a surface is confined between a pair of flat parallel walls. Related problems have been 
studied recently by Maggs eta1 (1989), Gompper and Kroll(1991), Fisher (1986) and Parry 
(1992a, b). 

Quite generally the presence of the walls affects the statistical mechanics of the snrface 
(interface or membrane) entropically by eliminating a large number of configurations which 
otherwise would cross the walls. This idea is central, for example, to the effective, 
fluctuation-induced steric repulsion force between nearby membranes first postulated by 
Hclfrich (1978). 

A central object of our study is the one-body probability distribution function (PDF) 
p(z), defined such that p(z)dz is the probability of finding the surface between z and 
z fdz .  Following earlier studies (Parry et a1 1991), we are interested in the case where the 
interface or membrane is confined exactly at a (fluctuation-dominated) wetting transition. 
This is equivalent to the situation in which the fluctuating surface simultaneously unbinds 
from both walls in the limit of infinite separation. Standard scaling arguments then suggest 
that p(z) will take the scaling form U(z/D)/D, where D is the distance between the walls, 
and U is an appropriate scaling function. For interfaces in two dimensions this can easily 
be checked using analytical transfer matrix techniques (Parry er al 1991). Moreover, for 
this problem it is known (Parry l992c) that in fluctuation-dominated regimes there is a kind 
of superuniversality; the scaling function U(z/D) takes the simple form [sin(nz/D)]"-', 
where the single parameter 19 is a critical exponent defined for the equivalent problem in a 
semi-infinite geometry. 

030516170/941155089t12519.50 @ 1994 IOP Publishing Ltd 5089 
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In this paper we report the results of Monte Carlo simulations for a variety of membrane 
models in two and three dimensions. We demonstrate that the PDFS exhibit the expected 
scaling behaviour. Surprisingly, the scaling functions appear to adopt an identical form to 
those known to be true for the interface models. 

The plan of the paper is as follows. In section 2 we present a brief discussion of the 
surface models which we discuss. Then in section 3 we review the theoretical motivation 
for our study and discuss the scaling properties of the probability distribution. In section 4 
we present the results of Monte Carlo simulations of two- and three-dimensional surfaces. 
Finally in section 5 we draw some brief conclusions. 

2. Models 

An interface separates two phase-separated coexisting phases. In general, a microscopic 
description of the interface is difficult. Modem studies of fluctuation-related interfacial 
phenomena employ a collective coordinate which models the interfacial position using some 
suitable receipe (Fisher and Jin 1991). A more comprehensive review of these and related 
issues can be found in Fisher (1988). 

Withi this paradigm, the interfacial statistical mechanics may then be determined by 
summing over all surface configurations r, assuming that for each r the energy is given 
by the intelfnce Hamiltonian 7i3(r) = y A ( r ) .  The problem remains of how to specify 
the interface configuration r. In a geometry in which the interface is confined between 
parallel walls it i s  not too implausible to suppose that the major conhibution will come from 
configurations in which the interface is almost parallel to the walls. The configuration r is 
then determined by the (singlevalued) interface position z(x, y ) .  The interface Hamiltonian 
is then given by 

where 0, denotes differentiation in the plane of the walls, and the integration is carried out 
over the d - 1 dimensions in the plane of the confining walls. In the limit of an almost flat 
interface, and ignoring the contribution of the completely flat interface. this reduces to 

This model has been widely used to discuss interface critical phenomena. There are a 
number of important assumptions to note. The interface is supposed not to curl back on 
itself (or, more technically, no overhangs are allowed). Then there is no further structure 
associated with the interface, such as droplets of the wrong phase close to the interface-or 
rather this is included in the surface tension quantity. In addition, no importance is attached 
to curvature of the interface. And finally a quadratic approximation is made for the excess 
surface area. 

In fact the Hamiltonian of equation (2) is often studied in a discrete approximation, in 
which the surface is defined on a (d - 1)-dimensional lattice, and characterized by a discrete 
set of heights z = nu, where a is taken to be a molecular length. The statistical mechanical 
model allows 1 < n < D*. The quantity D*a is then a measure of the distance between 
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the walls. The relation between D' and D, where Da is the actual distance between the 
walls will be discussed further in section 4. The model now becomes 

where the height is now defined at lattice points i, nn denotes that the sum is taken over 
nearest-neighbour sites on the lattice, U = y / h 2 ,  and h is the length scale of the lattice 
unit cell. In this form the model is usually known as the solid on solid, or SOS, model 
(Leamy et al 1975, Beijeren 1977). We have studied the two-dimensional version of the 
SOS model, even though it has been intensively studied by other authors (e.g. see Burkhardt 
1981, Chui and Weeks 1981, Hemmer and Lund 1988), in order to test the reliability of our 
method, and we denote this model as model A. We denote the three-dimensional version of 
this model as model B. In everything that follows we may take a = h = 1 without loss of 
generality. 

Over the last few years, stimulated in particular by the work of Helfrich and collaborators 
(e.g. see Helfrich 1973, 1974, 1990). there has been considerable interest in the behaviour of 
lipid bilayer membranes in biophysical contexts. The statistical mechanics of membranes is 
dominated not by surface tension effects (the membranes are in fact rather incompressible, 
and in any case are made of a different material than the surrounding fluid), but rather by 
membrane curvature. The Hamiltonian is now 

where c is the mean curvature at the point r on the membrane. If one adopts the same 
criteria to define membrane configurations as in the interface case, and makes the same 
'nearly flat' approximation, then c ( r )  = VI. A, where fi is a unit vector perpendicular to 
the membrane, and fi = -VLZ, (Helfrich 1990) leading to an SOS membrane Hamiltonian: 

A discrete lattice approximation can be obtained for this Hamiltonian in an analogous 
fashion to the approximation of equation (3) to equation (2). We shall denote this model as 
model C, with d = 2, and as model D when d = 3. 

Finally we consider more realistic approaches to the Hamiltonian (4). Leibler et al 
(1987) have introduced a model membrane (in d = 2) consisting of beads. These beads 
are attached to each other in the sense that adjacent beads may not approach more closely 
than a distance a, but may not be more than a distance 1 . 8 ~  away from each other. It is 
worth noting, of course, that in the d = 2 limit a membrane and a polymer are the same 
thing. These beads self-avoid, but nevertheless overhangs, which are forbidden within the 
SOS models, are now allowed. We label this model as model E. In this model there is no 
explicit curvature (at least in the most primitive case which we have considered), but there 
is a minimum, molecular, length scale below which the membrane cannot bend. This plays 
a similar role to the correlation length induced by the curvature. 

The analogous three-dimensional system is a bead net or polymerized membrane. This 
has been studied by Kantor etal (1986) and by Gompper and Kroll (1991). Unfortunately, 
the universal regime of interest to us is not computationally accessible in this case. 

Finally in this section we note that the statistical mechanics of alI these models is derived 
by calculating the partition function 2, which is a functional integral of exp(3ilkBT) over 
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configurations r, where kg is Boltzmann’s constant and T is the absolute temperature. The 
relevant parameters in the statistical mechanics of the models described above are thus 
p = y / k s T ,  (models A and B) and .? = K / k s T  (models C and D). In what follows below 
we shall, however, drop the tildes. 

R E Norman et a1 

3. Scaling of the probability distribution 

In this section we briefly recall the theoretical arguments which lead to the known scaling 
properties of the PDF. We consider a membrane or interface model which undergoes an 
unbinding transition at reduced temperature t = 0 and bulk field h = 0 (Fisher 1988). At a 
second-order fluctuation-dominated transition, length scales perpendicular to the wall scale 
with the single perpendicular correlation length CL. It is then natural to suppose (Pany 
1992a. b) that the PDF has the scaling form 

p(z) = IrlY1B~~zlflY~,hlrI-*) (6) 

where UL and A are the perpendicular correlation length and gap critical exponents, 
respectively. In writing equation (6) we have suppressed the non-universal metric factors 
and ignored the dependence on any irrelevant fields present. The subscript rt refers to the 
cases t > 0 (partial wetting) and t -= 0 (complete wetting), respectively. 

The important behaviour of the function 8 close to the wall is characterized by the short 
distance expansion (SDE) critical exponent I9 defined by 8 ( x ,  0) - x* - ’ ,  in the limit x + 0. 
The values of the SDE exponent are different in the different scaling regimes (Lipowsky and 
Fisher 1987). In the strong fluctuation regime 

B = r - l/uA(s) 

1991a) 

(7) 

whereas in the weak fluctuation regime (Parry 1991b) 

t Y = t t l .  (8) 

The parameter T in equations (7) and (8) was introduced by Lipowsky and Fisher (1987) 
in order to characterize the degree of interfacial wandering and will be discussed below. 
We also note that in d = 2 the exponent I9 is non-universal in the intermediate fluctuation 
regime (Parry 1991b), reflecting the presence of marginal long-range forces. 

Within the approximate nonlinear renormalization group (RC) theory of wetting 
transitions, Lipowsky (1988) has shown that, for the class of effective Hamiltonians with a 
fluctuation term X [ z ]  = JdR(V”z)’, the fixed points are controlled by a single parameter 
r = 2(d - 1)/(2n + 1 - d ) .  Consequently the critical exponent VI (and hence B) is only 
dependent on r itself. The exponent relations (7) and (8) have been fully confirmed for 
the interface (n = 1) and membrane (n = 2) models in d = 2 (Parry 1991b, Maggs et al 
1989). 

We now turn our attention to the properties of a confined interface. Purely repulsive 
walls result in a binding potential with no attractive relevant term. Thus confinement 
between two impenetrable purely repulsive walls-which merely exclude the possible 
interfacial configurations-can be argued to correspond to finite-size effects at a weak- 
fluctuation regime wetting transition. A scaling theory of p(z) in this situation, which 
generalizes equations (6), requires a new argument r = z / D  in the scaling function. The 
associated metric of this finite-size variable is unity. It thus follows (Parry et a1 1991). so 
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long as irrelevant model-specific variables are considered, that the PDF when I = h = 0 
contains a universal scaling contribution p ( z )  2 U ( ( ) / D .  The universal function U ( ( )  
will depend on the nature of the surface (interface or membrane), the dimensionality and 
the fluctuation regime. Moreover, from the RG theory we expect that the SDE of U ( < )  will 
depend only on the single variable T. The SDE for U ( < ) ,  for confinement between purely 
repulsive walls, is therefore U ( < )  - <' for interfaces and membranes. We should remark, 
of course, that such scaling behaviour is only expected for sufficiently low dimensionalities. 
Specifically, for n = 1, we only expect scaling for d < 3, while for n = 2, we expect 
scaling for d < 5 (Fisher 1986). 

In addition to the above general RG and scaling predictions for the properties of U ( < ) ,  
there is also a very surprising feature known to be true for the case of interfaces in 
two dimensions (Parry 1992~). As we have seen above, for interface confinement in a 
strip exactly at a fluctuation-dominated wetting transition, the PDF p ( z )  has the simple 
parametrization 

p ( z )  - (sin(rC))'(''-' (9) 

for all fluctuation regimes, or equivalently, all values of 0(r) .  The result (9) holds in 
all fluctuation regimes provided the one-body binding potential appearing in the interfacial 
Hamiltonian is conformally mapped from the semi-infinite geometry. 

The existence of a simple parametrization in the case d = 2, n = 1 is not explicable 
using the RG theory alone. It can be shown, however, that the universal form (9) is consistent 
with a conformal invariance hypothesis for the PDF p ( z )  for systems which maintain their 
translational invariance in one dimension under the mapping (Parry 1992a). The conformal 
invariance hypothesis also rederives other known universal parametrizations which appear 
in the properties of the spechum of the transfer matrix (Parry 1992~). We postpone further 
discussion of this rather interesting observation to the final section. 

This review of the scaling properties of the PDF provides the background for our study. 
This paper describes a simulation study of the various effective Hamiltonians described in 
section 2. In particular, we investigate the resulting PDF, and investigate whether it obeys 
the scaling form p ( z )  = U ( < ) / D ,  and, if so, whether this scaling form is the generalized 
sinusoidal form given by equation (9). In principle, once U ( < )  is known for a given 
Hamiltonian, the associated SDE exponent 0 - 1 can be determined. In practice, however, 
this quantity is very difficult to extract with any confidence. Instead we have focused on 
the global properties of the function U ( ( ) .  

Our goal in this paper has been very modest: we have sought to examine how the 
universal parametrization of equation (9), known to be appropriate ford = 2, n = 1, breaks 
down for values d # 2 and n # 1. However, the appropriate value of 0 has not been 
extracted from an SDE analysis of the scaling function U ( < ) .  Our fits of the numerical 
data to a scaling function of the form of equation (9), even when the fit is very good, only 
therefore allow us to extract an effective exponent. As we shall see, however, the agreement 
with the data achieved using this single-parameter fit is quite remarkably good and not at 
all expected. This is discussed in the next section. 

4. Monte Carlo simulations 

All the simulations have been carried out using the standard Metropolis Monte Carlo 
algorithm. Except where there are special features of interest we shall not discuss the 
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method further. A criterion for whether the thermodynamic l i t  has been reached can be 
obtained by measuring the variance W of p ( < )  as a function of system dimension L,  where 

R E Norman et a1 

Clearly we expect the thermodynamic limit to have been reached when W no longer exhibits 
system size dependence. In simulations of the lattice models A-D. we have used periodic 
boundary conditions in order to avoid unnecessary edge effects. Typical simulations for the 
lattice models A-D involved lo6 Monte Carlo moves per lattice site, with an equilibration 
period of 2 x IO5 moves. 

We discuss first the interpretation of the results of the lattice models A-D. We compare 
with p(F) - [sin(n<)]'-'. The effective exponent I9 can be extracted by plotting In[p(<)] 
against In[sin(nf)]. This should yield a graph with gradient I9-I. In fact the transformation 
from z to < is not as simple as it seems because for a given set of boundary conditions 
the effective width D is in fact an empirical quantity; the independent variable setting the 
width-a kind of 'bare width'-is the quantity D'. In addition, because the true position 
of the wall is unknown, the quantity z is itself determined only to within an additive factor 
a0 which places the wall with respect to the first possible occupied lattice position of the 
interface. In model A, the interface in d = 2, for which an exact solution of the statistical 
mechanics exists, I9 - 1 = 2, D = D* and a0 = I t .  

The question remains of how to determine the true width D. This can be determined 
by fitting p ( z )  close to a wall to the form C(z + q)$-', where C is a constant, I9 is the 
(same) exponent. and a0 is the fitting parameter designed to decide exactly the position of 
the wall. We recall in this context that, in the limit of small 6 ,  sin(n6lD) - 6. The position 
z is here necessariiy measured with respect to the first possible occupied set of lattice sites 
in the direction between the walls. If I9 obtained by the two methods agrees, then this 
is evidence that the assumed form of p(< )  is correct. In fact it is difficult to distinguish 
between different trial functions when there is a free parameter, because sin(n6/D) will 
differ from 6 except in the limit of large D for which large simulations are necessary for 
reliable results. In practice, we use this 'short distance expansion' not so much to determine 
8, but rather to determine ao, which allows the correct interpretation of the p(z) results 
over the whole thickness. 

In the case of model A, the short distance expansion, carried out for D = 20, using p(z) 
at the three sets of lattice points closest to the walls, yields Q = 0.91, and 19 - 1 = 1.806. 
The value of = 0.91, is, we believe, consistent with its exact analytic value of 1, in view 
of the uncertainties in the short distance expansion discussed above. We note that there 
are no error bars on these values (despite them obviously being in error!) because only 
three values of p(z) have been used to generate three parameters ao, t9 and C. A plot of 
In[p(<)l/ln[p(0.5)] versus In[sin(n<)] for L = 1000, U = 1.0, using results from D = 6, 
10, 20 (and taking a0 = 1) yields a value of I9 - 1 = 2 with a minute error, and a clearly 
universal curve, as one expects. We have found it useful to exhibit the results of all the 
lattice models together. These data are shown in figures 1 and 2: in figure 1 we show the 
log-log plots which formally establish the values of the exponent I9 in the various different 

t The LI priori expectation is that q) Z I ,  for then the wall is identified with the first non-occupied set of lattice 
sites. Another inherently plausible value for q) is 0.5. This would correspond to the sites representing the centres 
of the sampling boxes, with particles living on an underlying continuum. In this case the edge of the strip is 
identified with the edge of the box neighbouring the wall. 
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Figure 1. Logarithmic plot of p ( 0  versus 1 for models A, C and D. Ln model A we have taken 
a = 1.0; for models C and D, x = 0.2. 

-0.0 0 2  0.4 0.6 0.8 1.0 

z 

Figure 2. Plot of actual p(<)  for the data shown in figure I .  

models, while in figure 2, we show the actual p ( { ) ;  the difference between the results for 
different exponents 0 is very striking. 

It is also of some interest to note how the thermodynamic limit is approached. In the 
limit U + 0 the interface positions at neighbouring x are uncorrelated; we therefore expect 
that in this case the interface can take any position with equal probability; this corresponds 
formally to I? = 1. As U is increased at fixed system size L, the correlation length f N U - '  
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Figure 3. Model A: crossover of variance W of p(<) with increasing surface tension U, for 
6xed L = 1000, D = 20. 

We only briefly discuss model B, the interface in d = 3. Thii is the marginal dimension 
for this model, and so no scaling behaviour is expected, or indeed observed. 

An interesting feature of the results from model C (the SOS membrane in two 
dimensions), where once again we do recover universal behaviour, is that we find a0 = 0.67; 
in fact we have plotted p ( c )  in figures 1 and 2 here using a0 = 0.5. We find from these 
plots that t9 - 1 = 0.72 & 0.05, well below the tp - 1 = 2 value for model A. This value is 
consistent with the value of 0.67 derived bom the scaling argument of section 3. For model 
C we also find that the universality is only approached in the l i t  of large D (although 
in practice D does not have to be very large); this seems to be in contrast to model A, for 
which it is exact. This can be seen in figure 4, in which we compare the D dependence of 
the variance W of p(<) in models A and C. 

As we have observed in the last section, although model B is not expected to exhibit 
universal behaviour, it is expected for model D (the SOS model in d = 3). In this case we 
found a0 = 0.97 (consistent with I), and t9 - 1 = 2.1 & 0.1. We show in figure 5 how a 
stable value of W is approached as the system dimension L is increased. 

We turn now to model E. This is the only tmly off-lattice model that we are considering. 
This model is equivalent to a self-avoiding random walk in a rectangular strip. In the 
absence of the self-avoidance, the problem can be treated exactly (at least in the limit of 
a << D), using Green's function methods commonly in use in polymer physics (Doi and 
Edwards 1986). One expects a universal p ( t ) ,  with 8 = 3. We investigate here the effect 
of including self-avoidance. 

Simulations of this model, because it is off-lattice, and because it is necessary to include 
an algorithm which tests for self-avoidance, are considerably more time-consuming than 
other simulations we discuss. In addition, the equilibration time is significantly increased 
by the self-avoidance, and the approach to universality as a function of polymer length is 
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Figure 4. Models A and C D dependence of W .  showing that for model C the universal limit 
is only approached in the large-D limit. 
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Figure 5. Model D: graph of W(L)  showing the approach to the universal limit in the large-L 
regime: D = 10.0, K = 0.2. 

also slow. In the other simulations we are able to make use of periodic boundary conditions. 
In model E, by contrast, we have to allow the ends to be free, thus presumably increasing 
finite-size effects, which can only be eliminated by considering very long polymers. Finally, 
it is difficult to derive p ( < )  accurately because a finite grid must be adopted in order to 
sample the probability. Too fine a grid leads to inevitable fluctuations, while too large a 
grid fails to sample the distribution function sufficiently well. On the other hand, because 
the model is off-lattice, we no longer have the problem of defining the width D in terms of 
a bare width D*. However, one should bear in mind that the physical width of the strip is 
always D + a ,  if the centres of the beads are confined to a strip of width D. 

The criteria which we use for gauging the extent to which the universal regime has 
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Figure 6. Model E W ( L )  for D = 20. showing that the large-distance limif has been reached. 
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been reached, as system size is increased, are as follows: (a) the variance 1V seems to have 
settled down, (b) the end-to-end length of the polymer has settled down, and (c) the power 
law I ~ W ,  derived from the behaviour of p(z) close to the wall, has settled down. 

In figure 6 we show the dependence of the variance W as the polymer length L 
is increased. At L = 800, the largest value for which we took measurements, W = 
0.0395 f 0.0005. In figure 7 we examine the effective exponent t ? ~  as a function of 
L. Above L E 400 this seems to settle down at a value of 2.5, although in fact the 
p(z)  corresponding to this have not in fact settled down. Interestingly, if we suppose that 
p ( t )  - [sin(n<)]'-', the value of W which we derive corresponds to I9 - 1 E 1.44f0.05, 
which is reassuringly consistent with OW. The results are at least consistent with the 
canonical form for the probability distribution function. 

1.6 1 I I I l " " " " ' " " ' j  

, , ! , ,  __I_. I 1.1 " " 1 '  " " " 
-0 2w 4w m SW lax, 

L 

Figure 7. Model E the effective SDE exponent a w ( L ) .  showing the large-distance limit has 
been reached. 
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Finally we mention that we attempted to follow the same programme with a three- 
dimensional bead net model, but found that the universal regime (if i t  exists) was beyond 
the limits of the computational resources available to us. 

5. Discussion and conclusions 

In this paper we have given results of a Monte Carlo study of the scaling behaviour of 
confined interfaces and membranes. We have found that membranes, whether off- or on- 
lattice, and whether in d = 2 or d = 3, seem to obey a scaling law for their PDF of a 
form originally predicted to obtain only for interfaces in d = 2. While one of us (Parry 
1992a) has shown that the predicted superuniversal form for interface PDFS in d = 2 is 
consistent with conformal invariance argument, the deeper reason for this result remains 
unclear. Preliminary investigation by Henkel and Parry (1994) suggest that the conformal 
hypothesis is strictly limited to interface models in d = 2, and should therefore not apply to 
the membrane models in any dimensionality. Nevertheless, from a computational point of 
view the success of the parametrization suggested by the conformal invariance hypothesis 
is remarkable. 

In d = 2, the value of the effective (on-lattice) membrane exponent V - 1 is numerically 
0.72, but this is within the experimental error of the result predicted from a scaling argument 
of 2 3  (model C). Whether we can indeed ascribe the difference between these two figures 
to numerical uncertainty is unclear, however, for in d = 3 (model D), the predicted scaling 
value is 2.0, whereas we find numerically 8 - 1 = 2.4. The off-lattice result (model E) of 
9 - 1 = 1.5 remains intriguing but at this stage completely without explanation. 

Further analytical studies of the applicability of the conformal invariance hypothesis 
seem possible, For the interface problem the success of the hypothesis seems to be related to 
the conformal invariance of an appropriate classical Euler-Lagrange equation with marginal 
forces. For the two-dimensional membrane it may also be possible to make progress in 
solving the Fokher-Planck equation for the partition function in the confined geometry. 
The three-dimensional membrane clearly requires further study, in particular to find why 
the fitted exponent differs so dramatically from the scaling prediction. At present the most 
likely explanation is that some subtle numerical analysis is required to extract the short- 
distance expansion exponent, and that the superuniversal scaling form, although good, is 
fortuitous away from the wall. 

Finally, further numerical studies of the off-lattice models, both in two and three 
dimensions, would produce interesting and more reliable results. 
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